Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS One ; 17(2): e0263684, 2022.
Article in English | MEDLINE | ID: covidwho-1674018

ABSTRACT

Since the SARS-CoV-2 infection was identified in December 2019, SARS-CoV-2 infection has rapidly spread worldwide and has become a significant pandemic disease. In addition, human death and serious health problem caused by SARS-CoV-2 infection, the socio-economic impact has been very serious. Here, we describe the development of the viral vector vaccine, which is the receptor-binding domain (RBD) of SARS-CoV-2 expressed on the surface of Newcastle disease virus (LVP-K1-RBD19). The RBD protein concentrations on the viral surface were measured by the sandwich ELISA method. 106.7 TCID50/ml of LVP-K1-RBD19 has a 0.17 µg of RBD protein. Optical density (OD) values of mouse sera inoculated with 10 µg of RBD protein expressed on the surface of LVP-K1-RBD19 generated 1.78-fold higher RBD-specific antibody titers than mice inoculated with 10 µg RBD protein with alum at 28 dpi. Moreover, mice inoculated with 10 µg of RBD protein expressed on the surface of LVP-K1-RBD19 virus showed more than 80% neutralization at 1:256 against the SARS-CoV-2 pseudovirus. These results demonstrated that inactivated LVP-K1-RBD19 virus produces neutralizing antibodies against SARS-CoV-2 in a short period and could be elect protective immunity in humans and LVP-K1-RBD19 will be a good candidate for the COVID-19 vaccine.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Newcastle disease virus/immunology , Viral Vaccines/immunology , Animals , COVID-19/immunology , COVID-19/virology , Female , Humans , Mice , Mice, Inbred BALB C , Newcastle disease virus/genetics , Protein Binding , Protein Domains , SARS-CoV-2/immunology
2.
Front Immunol ; 12: 791764, 2021.
Article in English | MEDLINE | ID: covidwho-1556181

ABSTRACT

Despite global vaccination efforts, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread globally. Relatively high vaccination rates have been achieved in most regions of the United States and several countries worldwide. However, access to vaccines in low- and mid-income countries (LMICs) is still suboptimal. Second generation vaccines that are universally affordable and induce systemic and mucosal immunity are needed. Here we performed an extended safety and immunogenicity analysis of a second-generation SARS-CoV-2 vaccine consisting of a live Newcastle disease virus vector expressing a pre-fusion stabilized version of the spike protein (NDV-HXP-S) administered intranasally (IN), intramuscularly (IM), or IN followed by IM in Sprague Dawley rats. Local reactogenicity, systemic toxicity, and post-mortem histopathology were assessed after the vaccine administration, with no indication of severe local or systemic reactions. Immunogenicity studies showed that the three vaccination regimens tested elicited high antibody titers against the wild type SARS-CoV-2 spike protein and the NDV vector. Moreover, high antibody titers were induced against the spike of B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants of concern (VOCs). Importantly, robust levels of serum antibodies with neutralizing activity against the authentic SARS-CoV-2 USA-WA1/2020 isolate were detected after the boost. Overall, our study expands the pre-clinical safety and immunogenicity characterization of NDV-HXP-S and reinforces previous findings in other animal models about its high immunogenicity. Clinical testing of this vaccination approach is ongoing in different countries including Thailand, Vietnam, Brazil and Mexico.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Newcastle disease virus/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Administration, Intranasal , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Immunogenicity, Vaccine , Injections, Intramuscular , Newcastle disease virus/immunology , Rats , Rats, Sprague-Dawley , SARS-CoV-2/genetics , Safety , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
3.
Nat Commun ; 12(1): 6197, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1493100

ABSTRACT

Rapid development of COVID-19 vaccines has helped mitigating SARS-CoV-2 spread, but more equitable allocation of vaccines is necessary to limit the global impact of the COVID-19 pandemic and the emergence of additional variants of concern. We have developed a COVID-19 vaccine candidate based on Newcastle disease virus (NDV) that can be manufactured at high yields in embryonated eggs. Here, we show that the NDV vector expressing an optimized spike antigen (NDV-HXP-S) is a versatile vaccine inducing protective antibody responses. NDV-HXP-S can be administered intramuscularly as inactivated vaccine or intranasally as live vaccine. We show that NDV-HXP-S GMP-produced in Vietnam, Thailand and Brazil is effective in the hamster model. Furthermore, we show that intramuscular vaccination with NDV-HXP-S reduces replication of tested variants of concerns in mice. The immunity conferred by NDV-HXP-S effectively counteracts SARS-CoV-2 infection in mice and hamsters.


Subject(s)
Newcastle disease virus/immunology , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Female , Mice , Mice, Inbred BALB C , Newcastle disease virus/metabolism , SARS-CoV-2/pathogenicity , Vaccines, Attenuated/therapeutic use
4.
mBio ; 12(5): e0190821, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1430166

ABSTRACT

Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed in record time and show excellent efficacy and effectiveness against coronavirus disease 2019 (COVID-19). However, currently approved vaccines cannot meet the global demand. In addition, none of the currently used vaccines is administered intranasally to potentially induce mucosal immunity. Here, we tested the safety and immunogenicity of a second-generation SARS-CoV-2 vaccine that includes a stabilized spike antigen and can be administered intranasally. The vaccine is based on a live Newcastle disease virus vector expressing a SARS-CoV-2 spike protein stabilized in a prefusion conformation with six beneficial proline substitutions (AVX/COVID-12-HEXAPRO; Patria). Immunogenicity testing in the pig model showed that both intranasal and intramuscular application of the vaccine as well as a combination of the two induced strong serum neutralizing antibody responses. Furthermore, substantial reactivity to B.1.1.7, B.1.351, and P.1 spike variants was detected. Finally, no adverse reactions were found in the experimental animals at any dose level or delivery route. These results indicate that the experimental vaccine AVX/COVID-12-HEXAPRO (Patria) is safe and highly immunogenic in the pig model. IMPORTANCE Several highly efficacious vaccines for SARS-CoV-2 have been developed and are used in the population. However, the current production capacity cannot meet the global demand. Therefore, additional vaccines-especially ones that can be produced locally and at low cost-are urgently needed. This work describes preclinical testing of a SARS-CoV-2 vaccine candidate which meets these criteria.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Newcastle disease virus/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibody Formation/physiology , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Swine
5.
EBioMedicine ; 62: 103132, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-938895

ABSTRACT

BACKGROUND: Due to the lack of protective immunity of humans towards the newly emerged SARS-CoV-2, this virus has caused a massive pandemic across the world resulting in hundreds of thousands of deaths. Thus, a vaccine is urgently needed to contain the spread of the virus. METHODS: Here, we describe Newcastle disease virus (NDV) vector vaccines expressing the spike protein of SARS-CoV-2 in its wild type format or a membrane-anchored format lacking the polybasic cleavage site. All described NDV vector vaccines grow to high titers in embryonated chicken eggs. In a proof of principle mouse study, the immunogenicity and protective efficacy of these NDV-based vaccines were investigated. FINDINGS: We report that the NDV vector vaccines elicit high levels of antibodies that are neutralizing when the vaccine is given intramuscularly in mice. Importantly, these COVID-19 vaccine candidates protect mice from a mouse-adapted SARS-CoV-2 challenge with no detectable viral titer and viral antigen in the lungs. INTERPRETATION: The results suggested that the NDV vector expressing either the wild type S or membrane-anchored S without the polybasic cleavage site could be used as live vector vaccine against SARS-CoV-2. FUNDING: This work is supported by an NIAID funded Center of Excellence for Influenza Research and Surveillance (CEIRS) contract, the Collaborative Influenza Vaccine Innovation Centers (CIVIC) contract, philanthropic donations and NIH grants.


Subject(s)
COVID-19 Vaccines , COVID-19 , Gene Expression Regulation, Viral/immunology , Newcastle disease virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Female , Mice , Mice, Inbred BALB C , Newcastle disease virus/genetics , Newcastle disease virus/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Live, Unattenuated/genetics , Vaccines, Live, Unattenuated/immunology , Vero Cells
6.
Poult Sci ; 99(6): 2944-2954, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-824735

ABSTRACT

This trial assessed the efficacy of a commercial essential oil (EO) product on the immune response to vaccination against Newcastle disease (ND) and subsequent challenge with virulent ND virus genotype VII (vNDv genotype VII) by using the following experimental groups of broiler chickens (Each group had 21 birds with 3 replicates in each, n = 7): NC (negative control), PC (positive control), VC (vaccinated), and VTC (vaccinated and treated with EOs). Moreover, in a trial to study the effect of EOs on vNDv genotype VII in vivo as a preventive or therapeutic measure, 2 additional ND-vaccinated groups were used (PRV: medicated 1 D before vNDv challenge for 5 D; and TTT: medicated 2 D after vNDv challenge for 5 D). In addition, the immune-modulatory effect of EOs on the avian influenza (AI), infectious bronchitis (IB), and infectious bursal disease (IBD) vaccines was assessed through the serological response. The use of EOs along with administration of ND vaccines (VTC) revealed a lower mortality rate (42.86%), clinical signs, and postmortem lesion score (11) than ND vaccines alone (VC) (52.28% mortality and score 15), in addition to lower hemagglutination inhibition (P < 0.05) (6.5 ± 0.46) and viral shedding (10 log 2.28 ± 0.24) titres 1 wk after challenge in comparison with VC (8.63 ± 0.65 and 10 log 3.29 ± 0.72, respectively). Nevertheless, the EOs mixture (VTC) (1952 ± 28.82) did not significantly (P > 0.05) improve growth performance compared with the nontreated birds (NC and VC) (1970 ± 19.56 and 1904 ± 38.66). EOs showed an antiviral effect on vNDv in vivo (in chickens) as a preventive measure (PRV) as well as some therapeutic effect (TTT) through decreasing the viral shedding titres (loNC0), mortality rate, and severity of clinical signs and postmortem lesions, in addition to serum malondialdhyde level. Regarding the other viruses, the EOs mixture did not improve the immune response to the AI and IB vaccines but significantly (P < 0.05) increased the ELISA antibody titre for IBD virus at the 28th D of age (2,108 ± 341.05). The studied EOs mixture showed an immune-stimulating response to ND and IBD vaccines, antiviral effect against ND virus, especially if administered before the challenge; however, it did not have a growth-promoting effect.


Subject(s)
Chickens , Immunity, Humoral , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Oils, Volatile/pharmacology , Poultry Diseases/prevention & control , Viral Vaccines/pharmacology , Animals , Immunity, Humoral/drug effects , Oils, Volatile/administration & dosage , Viral Vaccines/administration & dosage , Viral Vaccines/classification
SELECTION OF CITATIONS
SEARCH DETAIL